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A nonlinear functional differential equation in

Banach Space with applications to materials with fading memory

by

William J. Hrusa

Abstract

We study a nonlinear functional differential equation in

Banach space. This equation is an abstract form of the equations

of motion for nonlinear materials with fading memory. Its basic

structure is hyperbolic in character so that global snuoth solutions

shoild not be expected in general. Memory effects, however,

may induce a dissipative mechanism which, although very subtle,

is effective so long as the solution is small.

We show that if the memory is dissipative in an appropriate

sense, then the history value problem associated with our

equation has a unique global smooth solution provided the initial

history and forcing are suitably smooth and small. The proof

combines a fixed point argument to establish local existence

with a chain of global a priori "energy-type" estimates.

The abstract results are then applied to establish global

existence of smooth solutions to certain history value problems

associated with the motion of nonlinear materials with fading

memory, under assumptions which are realistic within the

framework of continuum mechanics.

A



Chapter 1. Introduction

In continuum mechanics, the motion of a body is

governed by a set of balance laws common to all continuous

(mechanical) media, regardless of their composition. The type

of material composing a body is characterized by a constitutive

assumption which relates certain of the unknown fields appearing

in the balance laws.

For nonlinear elastic materials, the balance laws lead to

systems of quasilinear hyperbolic partial differential equations.

t A well-known feature of such systems is that they do not

generally possess globally defined smooth solutions, no matter

how smooth the initial data are. It seems interesting to

consider situations where a constitutive assumption incorporates

a dissipative mechanism in conjunction with an "elastic-type"

response, and to study the effects of dissipation on solutions

to the balance laws. In order to avoid purely technical

complications and highlight the main ideas, we confine our

study to motions which can be described with a single spatial

coordinate.

Consider now the longitudinal motion of a one-dimensional

[q body with reference configuration* M, a connected open subset

of ]R1 . Let u(x,t) denote the displacement at time t of the

particle with reference position x (i.e. x+u(x,t) is the

q position at time t of the particle with reference position x),

We assume that the reference configuration is a natural state.
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in which case the strain is given by* s(x,t) u (x,t).

x

For simplicity, we assume that the body is homogeneous

with unit reference density. The motion is then governed by

(1.1) utt(x,t) = a x(Xt) + f(x,t),

where a is the stress and f is the (known) body force. A

constitutive assumption relates the stress to the motion. We

consider here only materials with the property that the stress

at a material point x can be determined from the temporal history

of the strain at x.

If the body is elastic, then a(x,t) = q(c(x,t)), where 0

is an assigned smooth function witht 0(0) > 0, and the result-

ing equation of motion is

(1.2) utt (ux ) x + f.

Lax [10] and MacCamy and Mizel [12] have shown that the initial

value problem for (1.2) (with fHO) does not generally have a

global (in time) smooth solution, no matter how smooth the initial

data are.

For a viscoelastic body of the rate type, the stress at

time t depends on the strain as well as the strain rate at time

t. A typical constitutive assumption is

a(x,t) = O(E(xt)) + ),-(x,t), where p is as before and X is a

Here and throughout, subscripts x and t indicate partial
derivative3.
A dot i: used to denote the derivative of a function of a

single variable.
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positive constant, which leads to the equation of motion

(1.3) u u Xu + f.(13 tt ¢ (Ux x xtx

Global existence uf smooth solutions to certain appropriate

initial-boundary value problems for (1.3) has been established

by Greenberg, MacCamy and Mizel [ 9 ], and Dafermos*[ 6

assuming c, f, and the initial data are sufficiently smooth.

Viscosity of the rate type is so powerful that global smooth

solutions exist even if the initial data and body force are

large.

A more subtle type of dissipation is induced by memory

effects. For a material with memory, the stress at time t

depends, in same fashion, on the history up to time t of the

strain. If deformations that occurred in the distant past have

less influence on the present stress than those which occurred

in the recent past, we say the material has "fading memory".

A simple model for a material with fading memory is

provided by linear viscoelasticity of the Boltzmann type, which

is defined by the constitutive equation

(1.4) G(x,t) = cc(x,t) - f g(s)E(x,t-s)ds.

0

Here c is a positive constant and g is positive, decreasing, and

The results of Dafermos apply to the more general equation

utt (u ,u xt) x +f, with TY (p,q) > k > 0.
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satisfies

(1.5) c f g(s)ds > 0.

0

Condition (1.5) has a natural mechanistic interpretation:

In statics, i.e. c(x,t) = c(x) and a(x,t) = a(x) for all t,

(1.4) reduces to

(1.6) G(x) = (c - f g(s)ds)E(x).

0

* Thus (1.5) states that the "equilibrium stress modulus" is

positive.

In general, the constitutive equation for a material with

memory takes the form

(1.7) G(x,t) = '(Ct(x,.)),

where for fixed x and t, E (x,) is the function mapping [0,-)

tolR defined by ct(x,s) = e(x,t-s), s > 0, and Y is a

real-valued functional (not necessarily linear) with domain in

* an appropriate function space. The history of the strain up to

some initial time is assumed to be known.

The notion of fading memory can be interpreted

* mathematically as a smoothness requirement for Y. Following

Coleman and Noll [ 4,5 ], we introduce an influence function,

intended to characterize the rate at which memory fades, and

construct an LP-type space of admissible strain histories,

using the influence function as a weight. For convenience, we
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use history spaces of the L 2-type; our analysis can be adapted to

LP-type spaces for any p with 1 < p < oo

Let h be a positive, nonincreasing function belonging to
1!

L I(O,oo), and denote by Vh the Banach space of all measurable
h CO 2

functions w:[O,) -IR such that f h(s)fw(s)I ds < c,
0

equipped with the norm* given by

(1.8) IwIl h = w(o)l + f h(s)w(s) 2d

0

We refer to h as an influence function and to the elements of

Vh as histories. The reader is directed to Coleman and Mizel

[3 ] for an axiomatic development of fading memory norms.

Formally, we say that a material has fading memory if

the stress is determined by a constitutive equation of the

form (1.7), and there exists an influence function h such that

Y9 is defined and continuously Fre'chet differentiable on a

neighborhood & of the zero history in Vh. This is essentially

equivalent to the principle of fading memory formulated by

Coleman and Noll [4,5 ].

The main focus of this investigation is on global existence

of smooth solutions to the equations of motion for materials

with fading memory. A typical problem of interest

is to determine a smooth function u which satisfiest

Functions in V h1 are regarded as being equivalent if they are

equal at 0 and equal almost everywhere on (0,-).

t For s > 0, we set ut (x's) = u (X,t-s).
x x
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(1.9) 1tt(xt) a = (x ")) + f(xt),

x Eq, t > 0,

together with appropriate boundary conditions if - is bounded,

and

(1.10) u(x,t) = v(x,t), x E 7 , t < 0,

where v is an assigned smooth function. In order to h -lobal

existence, -V must satisfy certain natural conditions.

Choose an influence function h and a neighborhood Oof

zero In Vh such that Y is continuously differentiable on .

It follows from the Riesz Representation Theorem that the

Fr~chet derivative of Y admits representation

(1.11) (w;) E(w)(o) - IK(ws)w(s)dsWK(w, s) (s~d

0

for some E:&- IR and K:&x(0,-) -IR. We assume that K is

continuous on&?x(0,). Physically natural assumptions on E

and K are that E(O) is positive and that k(O,.) is nonnegative,

nonincreasing, and satisfies

00

(1.12) E(0) - J K(O,s)ds > 0.

0

The interpretation of (1.12) is similar to that of (1.5). An

elastic material is a special case of a material with fading

memory, and consequently to have global existence, we must

impose an additional restriction to ensure that the dependence

L
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of stress on past values of the strain is dissipative. To this

end, we assume that K(O,.) does not vanish identically. Roughly

speaking, the preceding conditions say that the linearization of

(1.7) about the zero history is the constitutive relation for a

physically reasonable linear viscoelastic material of the

Boltzmann type. For technical reasons, we later strengthen the

smoothness assumptions on F and K.

Coleman, Gurtin and Herrera [21, and Coleman and Gurtin [1]

have studied wave propagation in materials with fading memory

under essentially the above hypotheses. Of particular

relevance to this work are the results of Coleman and Gurtin

concerning the decay of acceleration waves, i.e. continuously

differentiable solutions of (1.9) which sustain jump discontin-

uities in their second derivatives. The amplitude of an

acceleration wave is defined to be the jump in acceleration.

It is shown in [1] that if the amplitude of an acceleration

wave is small initially, then it decays to zero monotonically.

On the other hand, the amplitude of an acceleration wave may

become infinite in finite time if the initial amplitude is

large. This damping out of small discontinuities indicates

the presence of a dissipative mechanism which is effective so

long as the motion remains "small", and suggests that (1.9)

should have global smooth solutions provided the initial history

and forcing function are smooth and small.

Results of this type have been obtained by several authors

for the model case
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00

(1.13) o(x,t) = c t (x,O)) - f (s) t( (x,s))ds

0

under appropriate conditions on ¢, 4, and m. For 7DP

existence theorems have been given by MacCamy Lill, Dafermos

and Nohel [ 71, and Staffans [15], and for , different from ,

by I)afermos and Noel 8 .

We here establish global existence and uniqueness of

smooth solutions to a class of history value problems associated

with (1.9) under smoothness and smallness assumptions on the data.

In Chapter 2, we formulate a history value problem associated

with an abstract version of (1.9). The assumptions used to

analyze the abstract problem are motivated by mechanics. In

Chapter 3, we prove the existence of a unique local solution

defined on a maximal time interval. It is then shown, in

Chapter 4, that the local solution is actually global if the

initial history and forcing function are suitably small. In

Chapter 5, the aforementioned abstract results are applied to

the equations of motion for materials with fading memory.

The local existence argument is based on an application

of the contraction mapping principle in an appropriate metric

space. It does not rely on the history dependence being

dissipative, and consequently applies to a larger class of

materials. Global existence for small data is secured via a

chain of a priori "energy-type" estimates. The presence of
9

dissipation plays a crucial role in the development of these

estimates. The basic strategy employed here of showing that

9
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dissipation prevails and ensures global existence when the data

are small is due to Matsumura [13]. Finally, we remark that

the pattern of estimates developed here was inspired by the

paper of Dafermos and Nohel [8].

'I

U

U

q
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Chapter 2. Abstract Formulation

In this chapter, we formulate an abstract analogue of the

history value problem (1.9),(1.10). We begin by discussing

Lsome preliminary notions.

A. Preliminaries

Let -V be a real Hilbert space with inner product (-,') and

associated norm 11'11, and let I be an interval of real numbers.

For m a nonnegative integer, we denote by C m(I;.V) the set of

all functions mapping I to .1/ which, together with their first

m derivatives (if m > 1), are bounded and continuous on the

interior of I and admit continuous extensions to the closure

of I. As usual, for 1 < p < , LP(I;'?.') denotes the set of

all (equivalence classes of) strongly measurable functions

w:I >/ such that f 1w(t)ffPdt is finite, and LO(I;S/) is the

I

set of all strongly measurable, essentially bounded functions

mapping I to-V For m a nonnegative integer and 1 < p < ,

let Wm',P(I;yl) be the Banach space of all functions w:I -_V

(k)
such that w ELP(I;-V) for each k=O,l,.. .m, equipped with the

norm defined by

m (k)I/

* f 11 w(t)lIPdt)1 1 P if p <
k=0 II

and

m (k)
ess-sup I1 w(t)Il if p =

tEl k=

U



(k) th
Here w denotes the k derivative* of w with the convention
(0) (1) (2)
w = w. We often write w and w in place of w and w

Let u be a function mapping some interval (--,T] into Sk.

For each t E (-c,T] we define the function ut: [0,c) _ 1Y by

(2.1) u t(s) = u(t-s), s > 0.

If u:(-c,T] / is sufficiently smooth, then for each tE(--,T],

we define the functions u t,u t:[0,-) !/ by

't(2.2) u (s) = u(t-s), s > 0,

and

(2.3) ut(s) = u(t-s), s > 0,

etc.

Certain of the estimates in Chapters 3 and 4 can be derived

by a formal computation, which, to be made rigorous, would

require smoothness properties beyond those possessed by the

functions involved. In these situations, we must first work

with a discrete analogue of the estimate and then take limits.

For this purpose we introduce the forward difference operator A

of stepsize n If w:I , then for each n > 0, we define

A w by

(2.4) (A w)(t) = w(t+n)-w(t).

These derivatives are to be understood in the sense of vector-
valued distributions.

q!
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We shall make frequent use of many standard Hilbert space

inequalities, particularly the Cauchy-Schwarz inequality and two

of its immediate consequences,
.E 2 1 2

(2.5) i(x,y)I < - Ixil + 1 ifyll V x,y E / , E > 0,

and the so-called Cauchy inequality

m 
< m(2.6) 1 xi= l l -<  i=lY 2 ,  Xm E

B. Basic Spaces

U We now introduce certain spaces that will play a central

role in the formulation and analysis of the abstract history

value problem. Let k' k=0,1,2,3, be real Hilbert spaces such

that _01l is continuously and densely imbedded in _k for

k=0,1,2. We denote the norms and inner products on k by

II.Il k  and <''>k' respectively, for k=0,1,2,3. By _ -i' we

denote the dual of Q1 constructed via the inner product on

i.e. - is the completion of _0 under the norm defined

by

(2.7) lxi_ l = sup <xy>0.11 y II 1 = 1

Clearly, q0 is imbedded continuously and densely in

We assume that

(2.8) <x,y> 2  < lxlll1yll 3  V x,y E.q 3 ,

V which implies that every continuous bilinear form on _2x '.2

admits continuous extension to 91X' 3

1 -3
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The only inner product which will be used explicitly in

the sequel is <'''>0* In order to simplify the notation, we

drop the subscript and write <.,-> in place of <',">0" The

symbol <.,-> will also be used to denote the duality pairing

between 9-i and 1l"

We shall frequently be concerned with functions which

take values in this scale of spaces. If f maps an interval I

into q3' it can also be regarded in a natural way as a

mapping from I to _k for k=-l,0,1,2. We use the same symbol

to denote each of these maps. Similar comments apply to linear

operators. To simplify our notation, we set*

3
(2.9) Y'= n - ( qk ; -k 2)

k=l

equipped with the operator norm defined by

(2.10) suLI p jlLxjl + su[ 11Lxj(21o ILI l11 1 IIxF2 =1

+ UF IILxll 1.

In the applications, the spaces -k will be subspaces of

the usual Sobolev spaces W k'2 ().

Let h be a fixed real-valued influence function, i.e. aqI

nonincreasing real-valued function belonging to L (0,-) with

h(s) > 0 for all s > 0. Without loss of generality, we assume

As usual, V(-k;-k2) is the set of all bounded linear maps

from -k to -qk-2"
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(2.11) f h(s)ds = 1.

0

For k=1,2,3, we denote by 9-k the Hilbert space of all strongly

measurable functions w: [O,) + -k such that

00

h(s)IIw(s)Ilk2ds is finite, equipped with the norm* given by

0

(2.12) I11IIk = IIw(0)Ik 2 h(s)11w(s)lk ds.
0

9 Clearly, ""k+l is imbedded continuously and densely in 9k

for k=1,2. Moreover, (2.8) implies that continuous bilinear

forms on 92. 91 and on 612×fx. admit continuous extensions

to 9x 9< and Vix- 3 , respectively. When no confusion is1 3 n 13'

likely to arise, we use the same symbol to denote a bilinear

form and its extension.

It follows from the Lebesgue Dominated Convergence Theorem

that if wE C 0 ((--,T]; Qk) for some k=1,2,3, then the map

t - wt is a continuous mapping of (--,T] into V-k" Also, if
wit

wE Cl((-o,T];Qk) then the map t - wt is continuously

differentiable from (--,T] into Vk and
k

d t t(2.13) U.t (wt) = wt -w < t < T.

If wEC 0((--o,T];qk) for some T > 0 and some k=l,2,3, one easily

deduces that for each tE[0,T]

We regard functions in k as being equivalent if they are

equal at 0 and equal a.e. on (0,-). This norm is associated
in an obvious way with an inner product.

V
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(2.14) IIwtll 2 2 sup i1w(s)I 2 + IIN II .

k - sE [O,t]

This inequality will prove useful in analyzing the history value

problem which we are about to describe.

C. The History Value Problem

Let A be a smooth map from V, to Y and B be a smooth map2

from 9,2x[O,o) to Y/'. We seek a function u mapping (-cc) to

the spaces -k which satisfies

* .. t + ~ t t
(2.15) u(t)+A(u )u(t) + f B(uts)u (s)ds = f(t), t > 0,

0

and

(2.16) u(t) = v(t), -- < t < 0.

Here f is a given function mapping [0,-) to the spaces -qk'

and v is an assigned function on (-c,0] with v0 E 2.

In the next section, we collect together all of the

assumptions which we shall impose on A and B. However, before

* these assumptions are stated, the following remarks are in

order.

It is not our intention here to develop a general theory

for functional differential equations in [filbert space; (2.15)

should be regarded as an abstract version of (1.9). By studying

(2.15) rather than analyzing (1.9) directly, we can develop an

existence theorem for (2.15),(2.16) which will be applicable to

a large class of problems associated with (1.9) and avoid the

repetition of standard arguments. Also, a proof in the abstract
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framework offers certain notational conveniences, and, hopefully,

is more illuminating.

We have tried to state our assumptions in such a way that

they will be convenient for the proofs in Chapters 3 and 4 and

will follow from a minimal set of assumptions in the applica-

tions; we have not tried to state a minimal set of assumptiols

on A and B. (See Remarks 2.1 and 2.2.). Although (a-l) through

(a-ll) may appear somewhat complicated, they will be satisfied

in the applications under a rather simple set of conditions on

Y9 , all of which are quite reasonable from the point of view

of mechanics. Finally, we remark that even though we are

imposing certain global conditions on A and B, our results are

applicable to situations in mechanics where Y is defined only

on a neighborhood of zero in V h . (See Theorem 5.1 et. seq.)

D. Basic Assumptions

Let the spaces qk' Y', and ')k be as described in Section B.

We assume that:

(a-l): The map A: -2Y9 is twice continuously Fr6chet

differentiable* and there is a constant A1 such that

(2.17) llA(w)l < A1  v w E '

V (2.18) IIA' (w;z)Il < A1WzU! 2  V w,z E

(2.19) IIA"(w;zlZ2 <ll.' < AllzW 2 "lfl 2  , W,Z1 ,Z2  E9 2"

We use the notation A'(w;z) to denote the Fr6chet derivative
of A at w acting on z.
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(a-2): There is a positive constant X such that

(2.20) <A(w)x,x> > Xllxl V w E x E
1 2 , 1

(a-3): For each fixed w E ' the linear operator A(w) is2'
-1 3

invertible with (A(w)) E and there
k=2

is a constant vI such that

(2.21) II(A(w))- 1xl k < v"1 xl k_ 2 , k=2,3, V w E ' x E.

(a-4): We define

(2.22) a(w;x 1 ,x2 ) =<Aw x >

and assume that there is a constant P such that

(2.23) la(w;xl,x2)1 < P 21xll110.1x2111 (l+lllwIl 3 )2

3 3-k V3' wExlx 2E 1'
(a-5): For each w E n W '3- ((-- ,T]; k), T > 0,

k=O

Z0E-93, ZI€ I 2, and g:[0,T] - 0 with

(2.24) g E C 0([0,T] ; fl C ([0,T] ;_0) ,

2(2.25) g E L ([0,T]; ' 0 ),

the linear initial value problem

t(2.26) Z(t)+A(w )Z(t) : g(t), 0 < t < T,

(2.27) Z(0) = Z0, Z(0) Z1

3 3-k
has a unique solution Z E n C ([OTC;3 -k k).

k=O
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(a-6): The map B: 9/2x[O,o) -_V is (jointly) twice

continuously Frdchet differentiable* and there is a

constant A2 such that
CO 2

I.(2.28) f IB(ws)11 2 h(s) -1 ds < A2  V w E 9-'- 2'
0
o

f jj(w,s) 2 92'
0

(2.30) f IB'(w;z,s) h(s) ds < A 2 1Iz111 2  V w,z E
0

(2.31) fIIB'(w,z,s)Ij 2 h(s) -1ds < A2 2'wz
A2Y I2 11 wz 111 21

0

00
(2.32) f JIB"I(w;z1'z2' 11 2 h(s) -1ds <  A I z1 1 2."  2.1]z

V w,zlz 2 E &2"

We define

(2.33) C(0,s) = j B(0, )dE, s > 0,

and s

(2.34) F(0) = A(0)-C(0,0),

and assume that

l -
(a-7): J II(0, S) 1 h(s) -1ds <

Here B'(.;.,s) denotes the Fr6chet derivative of B(.,s) for
fixed s, and 8(w,s) is the derivative of B(w,s) with respect
to s for fixed w. We use B' to denote the "mixed" derivative.

,w
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(a-8): There is a positive constant X2 such that

(2.35) <F(O)xx> > x 2 Vx E

(2.36) <C(0,0)x,x> > X2 [xI 1  V x E

2
(2.37) <C(0,0)x,F(O)x> > X211x!1 2 V x E-2

(2.38) iIC(0,0)xlio > x 2 Ijl 2  V x E 22

(2.39) IIF(0)xl 0  > '211l2 v x

(a-9): C(O,0) and F(O) satisfy

(2.40) <C(0,O)x,y> = <C(0,O)y,x> V x,y E -.2

(2.41) <F(O)x,y> = <F(O)y,x> V x,y E 2

(2.42) <C(0,0)x,F(O)y> = <C(0,0)y,F(O)x> V x,y E

(a-10): There is a positive constant S such that

T t
(2.43) f I 1<C(O,t-E)w( )d ll 11 at

0000 0

T t< f <c(o1o)w(t), f C(O,t- )w( )d > dt,

0 0

T t(244 J[I BO (-C)(0)~t) JC0,-w(d>ct0 0
T t

< a f <C(OO)w(t), f C(O,t-C)w( )d > dt

0 0

for every wE C 0 ([0,T];' 2 ) and every T > 0.

Uo
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(a-li): There is a constat v 3 such that for every

w EC0 ([0,T];QI) and every T > 0, the linear integral

equation

(2.45) A(O)w(t) + f B(O,t-Qw(C)d& = g(t)

0

has a unique solution wEC ([0,T];.Q 3 ) which satisfies

(2.46) sup I1w(t)ll 3  < 3  sup Ig(t)jI1,
tE[O,TI tE[O,T]

T 2T

2.47) I dt < 3  f Ig(t),I2
I (2.47) 11w(t)11 3 - 31

0 0

Remark 2.1: Existence of solutions to the linear initial value

problem (2.26),(2.27) can be proven in the abstract setting.

However, the proof is rather lengthy and in the applications

standard existence theory for linear hyperbolic equations will

imply that (a-5) is satisfied.

Remark 2.2: Existence of solutions to the linear integral

equation (2.45) can also be established in the abstract setting.

However, in the applications one simple condition will guarantee

that both (a-10) and (a-li) are satisfied.
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Chapter 3. Local Existence

The objective of this chapter is to establish the

existence of a unique local solution to the history value

problem (2.15), (2.16). We assume throughout that the basic

assumptions (a-l) through (a-6 ) hold. In addition, we assume

that f satisfies

(3.1) f E C0 ([0,) ) n C1 ([0,c) ;q 0 ),

2
(3.2) f E L 10, ;O0)

and that v satisfies

3 3-k
(3.3) v E n C3 .

k=(

and the compatibility conditions
CO

0. 0 0
(3.4) v(O) -A(v0)v(0) - f B(v ,s)v (s)ds f(0),

0

(3) 0 0 0
(3.5) v (0) -A(v )v() - A'(v ;v )v(0)

- f B(vO,s)vO(s)ds

0 0 0

f B'(vO;v 0 s)v 0(s)ds

0

+ f(0).

The purpose of (3.4),(3.5) is to ensure that the solution

will be smooth across t=0. An existence theory for (2.15),

(2.16) can be developed without assuming (3.4),(3.5), however,
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U i will generallybe discontinuous at zero.

Theorem 3.1: Assume that the basic assumptions (a-1) through

(a-6 ) hold, that f satisfies (3.1) and (3.2), and that v

satisfies (3.3),(3.4), and (3.5). Then, the history value

problem (2.15),(2.16) has a unique local solution u defined on

a maximal interval (--,T max), T > 0, such that for eachmax max

T < Tmax -the restriction of u to (--,T] satisfies

3 3-k
(3.6) u E n C3 -

k=O

Moreover, if T < -, thenmax

3 (k) 2
(3.7) sup 1 u (s)J - as t t Tma x

sE[O,t] k=0

The proof of this theorem is rather lengthy and will be

partitioned into several lemmas. We begin by constructing a

metric space which will play a central role in the remainder of

the chapter.

For M,T > 0, let I(M,T) denote the set of all functions

w:(--,T] 0 - which satisfy

3 3-k
(3.8) w E n W

k=0

(3.9) w(t) = v(t), t < 0,

and

3 (k)2(3.10) ess-sup II w ()

tE[O,T] k=0

1W
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Observe that V(M,T) is nonempty if M is sufficiently large.

Henceforth, we tacitly make this assumption.

Define a metric p on g(M,T) by

2 (k) (k) 2
(3.11) P(Wl ,w2 ) = sup 1 I wl(t)- w2 (t)12_ k -

tE[O,T] k=0

Lemma 3.1: Equipped with metric p, g(M,T) becomes a complete

metric space.

Proof: That p defines a metric on V(M,T) is obvious. Suppose

that {wj}j= 1 is a Cauchy sequence in ( (M,T),p). It then

follows easily that there is a function w belonging to

2n w2-k'o((,- ,?;/k), with w(t) = v(t) for t < 0, such that

k=0
2-k,w w (strongly) in W ' ((-o,T];/k) for each k=0,1,2. On

account of (3.10), there exists a subsequence {w j} and a

function x belonging to
3 w 3 k , o
n ((-,T] ;qk), with x(t) = v(t) for t < 0, such that

k=0

w x weak * in W3-k'I(c- T] ;-7k ) for k=0,1,2,3. From the

sequential weak * lower semicontinuity property of norms, we

deduce that

(3.12) ess-sup 3 1 ( ) [1 <(k)

tE[0,T] k=0

whence xE (M,T). By uniqueness of limits, we have w = x, and

consequently wE g(MT). (Indeed, weak * convergence in

W 3 ,co((-,T];q 0 ) arid strong convergence in W2  ((--,T];q0)

both imply weak * convergence in W2 - ((--,T];(0 ), for example.)

wI
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Therefore, w. w in the space ( V(M,T),p), which proves the

lemma. U

Now, for w in V(M,T), consider the initial value problem

(3.13) Z(t)+A(w t )Z(t) + f B(wt's)wt(s)ds
0

- f(t), 0 < t < T,

(3.14) Z(0) = v(0), Z(0) = v(O).

U I. t tIf we set g(t) = f(t) - j B(w ,s)w (s)ds, 0 < t < T, then

0

(2.24) and (2.25) are satisfied and hence (3.13),(3.14) has a
3 3-k

unique solution Z E n C ([0,T]; qk), by (a-S). Let S
k=0

be the map which carries w into the function defined on (--,T]

by

(3.15) (Sw)(t) =

Z(t), 0 < t < T

where Z is the solution of (3.13),(3.14).

Our goal is to show that S has a unique fixed point in

g(M,T), for appropriately chosen M and T, which will obviously

be a solution to the history value problem (2.15),(2.16). The

existence of such a fixed point will be established by the

contraction mapping principle. For the convenience of the

reader, we record below certain inequalities which will be used,

without explicit reference, in the subsequent estimates.

If w belongs to :(M,T), then
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(k) t 2 (k)o 0 12
(3.16) ess-supill w II I < 2M2 + III

tE [0,T] 3-k -3-k

for each k=0,1,2,3,

(k) 2 (k) 2 2
(3.17) 11 w(t)j 2 k  211 v(0) 12-k + 2t'NI, 0 < t < T,

for each k=0,1,2, and

(k) 2 (k) 2 2M2 (k) 2
(3.18) 111 w 1112_k < 4 IIv(O)jJ2k + 4t M + 1l V 1 ° 2_k, 0 < t < T,

for each k=0,1,2.

Lemma 3.2: For MI sufficiently large and T sufficiently small,

S maps V(M,T) into V(M,T).

Proof: Take w in V(M,T) and let u = Sw. In view of the

compatibility condition (3.4), u has the requisite smoothness

across t=O, and by the definition of S, u(t) = v(t) for t < 0.

It remains to show that if M is large and T is small, we have

* (3.19) ess-sup 1 u(t)II3k <
tE[O,T] k=O

independently of our choice of w.

a To simplify the notation, we set

00

(3.20) b(t) = B(w ,s)w (s)ds.

0

Then, u satisfies

(3.21) u(t) + A(w t)u(t) = f(t)-b(t), 0 < t < T,
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(k) (k)

(3.22) u(O) = v(O), k=0,1,2,3.

Differentiation of (3.21) with respect to t yields

(3) .(3.23) u(t) + A(w )u(t) = f(t)-b(t) - A' (wt;w )u(t),

0 < t < T.

We apply the forward difference operator A of stepsize n to

both sides of (3.23), take the inner product of the resulting

expression with (A u)(t), and integrate from 0 to T After
Ti 2

certain integrations by parts, we divide by n and let n tend

to zero. The result of this tedious, yet straightforward

computation is

(3.24) 1U(T)i10 + <A (wT)u(T),U(T)>

u 0

1 ( 2 + I <A(v0)v-(0),v'(0)>

T(3
+ f <A (wt w t)u(t) , u ( t ) >  t

0

T 
((3)+ f a(wt; u(t) ,u(t)) dt

0
T (3)

2 f <A'(wt;wt)u(t), u(t)> at

Tt(3 )
f <A'(wt; }t)u(t), u(t)> dt

0
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t , . t(3)
0 <A,,(wt;wt ,w )u(t), u(t)> dt

- u <ft))u>t>dd0

"T (3)

f J<f(t), u(t)> dt

0
1. (3)

T T

From (3.24), we deduce that

(3) 2 2

(3.25) II (u ) 110 +  Xllf(T)l 1
(3) 2 0 Av)(O ()< II v(O)llO +o A v ) (O , (

T T

0 0

0 0
3 f (k 2 a

+ P(M) 1 iu(t)II3-k dt' 0 < T <

k=0 0

where P:[O,) - [0,-) is a locally bounded function which can be

chosen independently of w and T, and X is a positive (coercivity)

constant which is independent of w, M, and T.

Applying (A(w t)) - to both sides of (3.21) and (3.23), we

get

t -
(3.26) u(t) = (A(w )) l[f(t)-b(t)-u(t)], 0 < t < T

and
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t - (3) t

(3.27) u(t) = (A(wt )-l[f(t)-b(t)- u(t)-A(wt ;wt)u(t)],

0 < t < T,

from which it follows that

(3.28) Ilu(t) l3 -< ( f(t)I2 + Ib(t)I1l +1 )

0 < t < T,

and

w• 2 *( )1 + l* t 12 + 1(3) t 12
(3.29) Ilu(t)Il2 _ v'dff~t)tl + IIb(t)IIo + IIu(t)Il o

+ (l+M2t 2 )lu(t)ll3), 0 < t < T,

for some positive constant pi which can be chosen independently

of w, M, and T.

Now, set

3 (k) 2
(3.30) V(w,M,T) = sup ] u(t) 1

3 k,

tE[O,T] k=0

and observe that V can be dominated by a linear combination of

the suprema of the left hand sides of (3.25),(3.28), and (3.29).

We want to show that if M is sufficiently large and T is

sufficiently small, then V(w,M,T) < M 2 , independently of our

original choice of w.

In order to secure such a bound for V, we need to estimate

the terms involving b which appear on the right hand sides of

(3.25),(3.28), and (3.29). Making use of the identities
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t

(3.31) b(t) f j B(w t t-Qw(Q)d

0

0

+ f I -vQC
-00

t

(3.32) b(t) =f B(w t t~w(Q)d

0

f
0

+ FB(wt,t-)v(Q)dE
-00

+ f B'w;~~tQ()E
-00

and
00

(3.33) b(t) =B(wt1)~t B(w ,s)w (s)ds
0

00
7' t

+ 2J B (w ;w ,S)w (s)ds

0

0

00

we deduce that
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(3.34) 11b(t)112 < A + t2Q(M), 0 < t < T,

(3.35) b(t) 0 < A + tQM 0 < t < T,

and

(3.36) 11b(t)110  < Q(M), 0 < t < T,

where Q: [0,-) - [0,o) is a locally bounded function which can be

chosen independently of w and T, and A is a positive constant

which is independent of w, M, and T.

Combining (3.25),(3.28),(3.29),(3.34),(3.35), and (3.36)

in a straightforward fashion, we arrive at an estimate of the

form

(3.37) V(w,M,T) < a + (T+T 2)R(M) + (T+T )R(M)V(w,M,T),

where R:[0,) - [0,-) is a locally bounded function which can be

chosen independently of w and T, and a is a positive constant

which is independent of w, M, and T. (Of course, a and R

* depend on certain properties of f and v.) If we fix M0 large

enough so that M 2_ 3a and then select TO small enough so that

2(T0 +T0 )R(M0 ) < a, we deduce from (3.37) that

(3.38) V(w,M0 ,T0 ) < M2
-0'

and the proof is complete. U

Fix M > 0 and 7r > 0 such that S maps V(R,T) into V(R,T)

for every T which satisfies 0 < T < T.

q
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Lemma 3.3: For T sufficiently small, the map

S: .(M,T) + '(,M,T) is a strict contraction with respect to

the metric P.

Proof: Take Wl,W 2 in V(5,T) where 0 < T < T, and set

u 1 = SWl, u 2 = Sw 2, U = u1 -u2, W = w 1 -w2. Then, U satisfies

(3.39) U(t) + A(wt)U(t) = [A(wt)-A(wt)u2t
00

r+ t t+ j [B ws-B~wis]lsd
0

" J B(wtS)Wt(s)ds, 0 < t < T,

0

(3.40) U(t) = 0, t < 0.

Differentiating (3.39) with respect to t and rearranging certain

terms, we get

(3) t(3.41) U(t) + A(w1 )U(t)

t t . tt
-[A(w 2)-A(w )]u 2(t) - A (Wl;wl)U(t)

AIN 2;W )u2(t)

+ [A'(w 2;wt)-A' (w;w )u 2(t)

qo
+ f [B(wt,s)-B(wt,s)]W~t(s)ds

0

- B(w,s)W t(s)ds

0
Co

-f B'(w ;w2,s)Wt(s)ds

0
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f B'(wt;Wt,s)wt(s)ds

0

00

0 < t < T.

We take the inner product of both sides of (3.41) with U(t)

and integrate from 0 to T . After certain integrations by parts,

we arrive at

2 1
(3.42) U. TI~)10 + -1 A(T T),U():

• T

f <A' (w';wt)U(t) ,U(t)> dt

% 0

T

0

Tt+ f <[A(w)-A(wt)]u U(t)> dt

0

-f <A (w;w )u(t),U(t)> 
dt

0
T

f <A (w2; W )u2 (t) w (t)> dt

0
T

+ J<[A'(w;W,)-A (w ,s)]wu
0

21 t
0 0
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- f< B(w2,s)W (s)ds,U(t)> dt
0 0o oo
o 0

- <f B'(wt;Wt*,s)Wt(s)ds,U(t)> dt

0 0

So o t t

f ,<f B'(w;w ,s) ]w(s)ds,U(t)> dt,

0 0

0 < t < T.

Since W(t) = 0 for t < 0, it follows that

(3.43) (11wtlii2 < 2 sup 2 0 t 2 T,
2 t- [O,T] 2' 0 -

and

(3.44) 1,ill < 2 sup 0 < t < T.(3. 4) ll ll., t. I  < 2 su IIW , (t)[Il, _ _-
1 tE[0,T]

Thus from (3.42), we deduce that

2 2 2 (k) 2

(3.45) IfU(II 0  + XI1U( r)I < 1[ k Y f U(t)[2-k dt
~0

+ Tsup (1W(t)11 2 + fIW(t)]l), 0 < T < T,[ ~t€ [ 0T]- -

where X and i are positive constants which can be chosen

independently of wI , w2, and T.

t -1Applying (A(w )) to both sides of (3.39) and making use

t
of the fact that W (s) - 0 for s > t, we get
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(3.46) U(t) (A(x4) -{[A (t2A (wt1f2(t)
t t t

- U(t) - B(w2 ,s)W (s)ds

0

02

- [B(w ,s)-B(w ,s)]w1(s)ds),

0
0 < t < T.

It follows from (3.46) and the inequality

I, T

(3.47) III WtIBl < 2(f W()Id ) 2 0 < t < T,
0

that

(3.48) 2!2(t)l< yfllU(t)I)O + sup (JW( )112 + i]W,()Ijf))
.EE[0,T]

0 < t < T,

;.lip where y is : positive constant which is independent of wlw 2 ,

and T.

Combining (3.45) and (3.48), we obtain an estimate of the

form

2 (k'
(3.49) sup 1 1 U(t)12k

tE[0,Tj k=O

2 2 (k) 2< r(T+T ){ sup X I U(t)I]2ktE[0,T] k=O

2 (k) 2k.

+ su ) Y IW(t )II k
tC1O,T] k=0

where a is a positive constant which can be chosen independently

of wlw 2, and T. (Of course, a depends on v and M.) If we
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select T small enough so that 3aT(T+T ) < 1, then (3.49) yields

1
(3.50) 0(swlsw 2 ) < O(Wl,W 2 )

V w1 ,w 2 E

which completes the proof. U

Remark 3.1: The proofs of Lemmas 3.1, 3.2, and 3.3 remain

valid if we drop the compatibility assumption (3.5) and replace

(3.3) with the weaker condition

3 3-k,oo (k)
(3.51) v E n W ((n-W,0];.k), v(0) E 3.k,

k=O

k=0,1,2.

Proof of Theorem 3.1: From Lemmas 3.1, 3.2, 3.3, and the

contraction mapping principle, we deduce that S has a unique

fixed point in ?(M,T) for sufficiently large M and sufficiently

small T > 0, which is the unique solution of (2.15),(2.lt) in

n w k) Let (-,t) be the maximal interval on

k=O

which a solution u of (2.15),(2.16) exists and satisfies

3
u E n w3 -k,-(((-,T]; -qk ) for every T < t.

k=O 3 (k) 2

Suppose that t < - and that ess-sup Y 11 u(s)1 3 _k remains
sE[O,tj k=O

bounded as t - t. Then, we can extend u to be defined on

(-c,t] such that the extended function satisfies
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3-k,- (k)
(3.52) u kn ((-t,] k) u() E -Qk k=Ol 2,

k= 0  - '

and
00

L(3.53) u(t) = -A(ut )u(t) - { B(ut s)ut(s)ds + f(t)

0

Making an obvious translation of variables, we can now use

Lemmas 3.1, 3.2, 3.3, and the contraction mapping principle

again to extend u so that it is a solution on some interval

(--,t*] with t* > t, which contradicts the assumption that

S(--,t) is maximal. Thus, if f , then

3 (k) 2
ess-sup 1 I! u(s)113_ k  0 as t t.
sE[O,t] k=0

Finally, because of (3.3), (3.5), and that fact that u is

a solution of the initial value problem (3.13), (3.14) (with

w=u) on [0,T] for each T < T, we actually have that
3 3 -u E n c3 -k ((k T]* ) for each T < t. The proof of Theorem

k=0

3.1 is complete. U

Remark 3.2: If we drop assumption (3.5), Theorem 3.1 remains
(3)

valid with the exception that u may be discontinuous at t=O,

i.e. the history value problem (2.15),(2.16) has a unique local

solution u defined on a maximal interval (--,T ), T max > 0

such that for each T with 0 < T < T the restriction of u to

3-k
(--,T] satisfies u E n C3 ((--,T]; k) and the restriction

k=l 3-k
of u to [0,T] satisfies u C ( [0,1'q k) and if

k=O
Tma x < , then (3.7) holds.

ma
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Chapter 4. Global Existence

In this chapter we show that the history value problem

(2.1S),(2.16) has a unique global solution, provided that f

and v are suitably small. We assume throughout that the basic

assumptions (a-l) through (a-ll) hold. We also assume that f

satisfies

(4.1) f E C [0,o-) ;qi)n L 2 ([0,-) ;-qi)

(4.2) fE C([O,); o)l L

2
(4.3) fE L2 ( [ 0 ,

and that v satisfies

3 3-k

(4.4) v C n c3((--,0] ;9V
k=0

and the compatibility conditions

(4.5) V(0) : -A(v 0 )v(O) - J B(v 0 ,s)v 0 (s)ds + f(0)

0

(3) 0 0 Q0
(4.6) v(0) : -A(v )v(0) A'(v ;v )v(O)

- B(vO,s)vO(s)ds

0 o ( 0 ' ~ 0

B'( ;v0s)v (s)ds

0

+ f(0).

The sole purpose of (4.5),(4.6) is to ensure that the solution

will be smooth across t=0. (See Remark 4.3.)
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vs As discussed in the Introduction a global solution should

be expected only when f and v are suitably small. To measure

the sizesof f and v, we define

I 2 +

(4.7) _(f) = sup (lf(t)Iil + IIf(t) 0l)
tE [0 ,co)

+ f ( f (t),1 1 +o1( ) 1 +  [Ijf(t)II2 dt

and

2 (k)0 12

(4.8) 12(v) = I III 3-k'
,u k=0

Our main result is:

Theorem 4.1: Assume that the basic assumptions (a-l) through

(a-ll) hold and that the influence function h satisfies

(4.9) h(t+s) < ch(t)h(s), V t,s > 0,

for some positive constant c. Then, there is a positive

constant 6 such that for each f and v which satisfy (4.1)

through (4.6) with

(4.10) 5F(f) + 5V(v) < 6

the history value problem (2.15),(2.16) has a unique solution

S3-k
u E n c3 an

k=O

(k)

(4.11) u(t) 0 in -q3-k-l I as t +

for k=0,1,2. Moreover there is a positive constant r such that
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3 (k) 2
(4.12) ii u(t)113_ k  P{Y(f)+< v)} V t > 0.

k=0

Remark 4.1: Clearly, exponential influence functions of the

form h(s) = Meds, M > 0, d > 0 satisfy (4.9). However,

-dinfluence functions of the form h(s) = M(l+s) - , M > 0, d > 1,

do not satisfy (4.9).

Remark 4.2: Theorem 4.1 remains valid if we drop the assumption

(4.9) and replace (4.10) with the stronger condition

2 (k)0O 2
(4.13) 7(f) + 9/(v) + f f h(t+s)l v (s)113-k dsdt < 6.

0 0 k=O

The proof requires only trivial modifications.

Remark 4.3: If we drop the compatibility assumption (4.6),
(3)

Theorem 4.1 remains valid with the exception that u may be

discontinuous at t=O, i.e. if 7(f) + V(v) < 6, then (2.15),
3 3-k

(2.16) has a unique solution u E C ((- , , k) such
k=l

that the restriction of u to [0,-) satisfies
3 c3k

* u E n Ck ([0,); k) , and (4.11) and (4.12) hold.
k=O

Remark 4.4: It is interesting to observe that the symmetry

condition (a-4) on A is not used to derive any of the global

estimates in the proof of Theorem 4.1. It is, however, needed

as an assumption in Theorem 4.1 because it is used in the local

existence proof.

9
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Proof of Theorem 4.1: Clearly the assumptions of Theorem 3.1

are satisfied, so let u be the solution of (2.l5),(2.16) on a

maximal interval (--,T ma). For TE[O,T ma), set

3 (k)
(4.14) -W(u(T)) sup 3 ( 2

tE[O,T] k=0

3 (k) 2
+ 1 u( t)112 k

~k=0 03-

Our goal is to show that if (4.9) is satisfied with 6

sufficiently small, then

(4.15) 9(u(T)) < c{_(f) + '(v)}, 0 < T < ma x

for some positive constant K which can be chosen independently

of 6, f, and v. This will obviously imply Tmax = by

Theorem 3.1 and yield the estimate (4.12). Also, (4.15) will

imply that the restriction of u to [0,-) satisfies

L j 3
3-k,2

(4.16) u E n w3'
k=0

from which (4.11) follows immediately.

To establish (4.15), we develop a chain of energy estimates.

We begin by rewriting (2.15) in the equivalent form
00

(4.17) u(t) + F(0)u(t) + I C(0,s)ut(s)ds

0

f f(t) + [A(0)-A(u t)]u(t)

+ rB(Os)-B(ut s)]u t(s)ds,

0
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which in turn is equivalent to

(4.18) u(t) + F(O)u(t) + fc(O,t:-i1u( )d sd

0

00

f C(0,t-q)v(Q)dC.

We take the inner product of C(0,O)u(t) with both sides of

(4.18) and integrate from 0 to -r, thus obtaining

1(4.19) T . O,)()-()

+ 1~ <C(0,0)u('r),F(0)u(ri>

+ <C(O,0),(t), fC(Olt-)*)~§ d

0 0

1

T ~ <C(O,O)V(),v(0)>

q+ -1 <C(O,O)v(O), F(O)v(O)>

+ .1 C00u(t),f(t)> dt
q 0

+ f <C(0,O)u(t),[A(0)-A(u t)]u(t)> dt

0

TCO0~) tO

+ fJC00U() [B(0,s)-B(ut ,s)]Ut (s)ds> dt
0 0
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f 0 -fut) C(0,t- )v( )d&> dt,

0 max*

Next, we apply the forward difference operator A T)of

stepsize iito both sides of (4.17). After making use of the

identity

CO t
(4.20) I (,)Au)()= C0-)r u)( )d

'3 0

W + fC(O,t-M)A v)( )d ,
we take the inner product of the resulting expression with

C(0,0)(A u)(t) and integrate from 0 to Tr After numerous
n2

integrations by parts, we divide by n and let ni tend to zero.

The outcome of this computation is

(4.21) C00'*T,'T)+ C, uT,()T>

t

+ lim 147 f <C(0'0)(A~u)(t)' fC(0,t-oo T, u)( )dE> dt
n4'O n 0 0

=11
-~<C(0,O)v(0),V(0)> + T <C(0,0)V(0),F(0)v(0)>

+ <C(O,0)u('r),f(T)> - <C(O,0)V(0),f(0)>

f <f(0,0)u(t),f(t)> dt

0
1 T

+ <((,0)u(T),[A(0)-A(u )]u(T)>
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+ f <C(0,0)u*(t),At(ut ;ut )u(t)> dt

0

00

+ <C(0,O)v(0), f [B(v,s)-B(0 , S)]v(s)ds>
0

+<C(0,0)(), f B(u ;u s-(,s)v (s)ds> d
o o

T 0

+f<C(0,0)U*(t),[B13(ut )-B(,0)'u(s)d> dt

00

T

+1 f C00*) [B(ut ,)-B(0,)]u ()ds>d
0

TT 0T

+- <C(,)U(t),( fu )B'u('r)>B(,~utsd>

00 0

TT

0 * 0-.

+ J <C(O,0)u(t),Al(u ;u )u(t)> dt

0

T

+ f <C (0,0)u(t),A I(u t ;u t)u(t)> at
0

+ [<C(0,0)U'(t),A (ut;u , u )u(t)> dt

-<C(,op))U(T), f 1'(u ;uT ~u(s)ds>

0
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+ <C(O,O)v(O), f B'(v ;v0,S)v (s)ds>

o 4O

t t *t+ UB'(u ;u ,S)u (s)ds> dt

o 0

+ f <C(0,O)U*(t), f B"(u ;u ,u,s)u (s)ds> dt

o 0

0 0

<C(,)U(t), B B(,)(U U U's()ds>

0 0

<CO.)()COTVO>+ <C (O,0)v(O),C(,)()

+ f <C(0,0)u(t), (,t)v ds>at

0<<

+O f <C(o P)( l fi JF TivQd

0 0

dIt ino (4.21)r eis, socneqetyahtimti
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question also exists (and is finite) for each TE[O,Tmax).

Moreover, from (2.43), we conclude that

-rt

(4.22) lim -4 <C(0,0)(Anu)(t), fC(Ot- )(Au)( )d > dtn+O n n 0*

> 0.

Differentiation of (2.15) with respect to t yields

(3) t
(4.23) u(t) + A(u )u(t) + A' (u ;u )u(t)

00 00

+ B(ut,s)ut(s)ds + f B (ut;ut,s)ut(s)ds
o o

=f(t),

which can be rewritten as

(3) t t

(4.24) u(t) + A(u )u(t) + A(u ;u )u(t)

t 0

+ J B(utt- )u(E)d + f B(utt-E)v(E)d

0 -00

B'(ut;ut s)ut (s)ds = f(f).

U 0

From (4.24), we easily deduce

(4.25) 11 (3u t)II0 - 611A(ut)u(t)ll[0 611 B(ut t-$)u(&)d 0

0 0

< 61A(u;u )u(t)110  611 B(ut~-v(~ 0

U 00

S61ff B'(ut;ut)ut(s)dst + 6 i( o f

0

t max
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To obtain our next estimate, we rewrite (2.15) in the form
t

(4.26) A(O)u(t) + f B(O,t-E)u(E)d = f(t)-u(t)

0

+ [A(O)-A(ut )]u(t)

of [B(Os)-B(ut ,s)]ut (s)ds

0
0

- f B(0,t-E)v()d .
- OO

Then, by using (a-li), we arrive at

(4.27) sup 2 - sup2
tE[0,T] tE[0,T]

< j sup Ilf(t)II1 + U sup II[A(0)-A(ut )]u(t)I1
tE[0,T] tE[0,T]

+ sup If [B(O,s)-B(ut s)]ut (s)dsl2

tE[O,T] 0

0

+ sup f B(0,t-)v(C)dE 12 , 0 T <
t E [ 0,U] -a

where u is a positive constant which is independent of f and v.

Observe now that by combining (4.19),(4.21),(4.25) and

(4.27), we can dominate

3 (k)
sup XI1 u(t)II2 k

tE[oT] k=O
T t

+ f <C(,O0)u(t), f ((0,t-)u( )d&> dt

0 T 0

+ lira <C(0,0)(Anu)(t), Jc(0,t-C)(Anu)(C)dE> dt

0 0
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by a linear combination of the suprema over [0,T] of the right

hand sides of (4.19),(4.21),(4.25), and (4.27). The last two

terms in the above expression (which are positive by (a-10))

represent the "dissipative contribution" of the memory and will

play the crucial role in securing global existence. We want to

take advantage of these terms by using them to derive estimates

T3 i(k) 2

for = I ()t.
0

To this end, we apply the Cauchy inequality to the identity

(4.28) C(0,0)(A nu)(t) = C(0,t)(A u)(0)

t t
+ f C(O,t- )(Anu)( )d- B(0,t-MA I u)()d ,

0 0
2

and integrate from 0 to T. We then use (a-10), divide by n

and let n tend to zero to obtain
wj T

(4.29) Itc(o,O)u(t)Id
0

t

- 36 f <G(0,0)u(t), f C(O,t-)u( )dC> dt
0 0

T t
- 3B lim <C(0,0) u)(t), fJC(0,t-E)(A u)(E)dE> dt

nO n 0 0
w<3I2dt, 0 < T < T ,lJ [C(O't)v(O)[dt 0 -r mTx

0

where B is a positive constant which can be chosen independently

of f and v.

From (4.26) and (a-ll), we easily get

L
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T T T

(4.30) Iu(t) 2 d y a (t) dt < { If(t) 2 dt
0 0 0

+ Y r [A(0)-A(u t)]u(t)!l2 dt

0

T 00

+ Y H~ [B(0,s)-B(ut,s) ]ut(s)dsI dt
0 0

T 0

Y 11 f B(0,t-C)v(Q) q2 dt, 0 < T < Tf ] BOt v$d] max'

0 -oo

V for some positive constant y which is independent of f and v.

Our next estimate is obtained by the following procedure:

We apply the forward difference operator A to both sides ofn

(4.17) and make use of (4.20). After applying the Cauchy

inequality, we integrate from 0 to T and use (a-10). Then, we
2

divided by n and let n tend to zero. The result of this

Bj computation is

(4.31) u(t)t 2 dt - 9 F0ut 1T

0 0

T t

- 98 lira m f <C(0,0)(Anu)(t), fc(o,t-&)(Anu)( )d > dt
r) 0 0

T T

< 9 }. f(t) 0 dt + 9 f IC( O ' t)v(0)I 0 dt

0 0
T 0

+ 9 11 f B(0,t- )v()d ]HO + 9 , I[A(0)-A(ut)]u(t)., dt
0 -0 0

V

0 V
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T

9 fA' (ut; t)u(t) 2
0

T 00

+9 f [B(O,s)-B(ut s)]ut(s)ds0 dtm0

3 0

+ 9 1 f' B'(ut;ut ,s)ut(s)ds l2 dt, 0 < T < T1 0 max
0 0

Out final estimate
T T

(4.32) <F(0)u(t),u(t)> dt f IF(0)u(t)jI o  dt
* 0 0

1 ( I3) 2 dt F " 2 1 2
- Tf u(t dt -0 IF(0)u(T)I 0 -0 IIu(T h0

0

< ,,F(O)v(0)112  + 1 II (0) 112 0 < T < T2 0 -"v O" O0 max'

follows easily from the identity
T

(4.33) <F(0)u(t),u(t)> dt = <F(0)u(T),u(T)>

0
T/ . (3)

<F(0)v(O),v(O)> j <F(0)u(t), u(t)> dt.

* 0

Before completing the proof, we pause to comment on the

role of (4.9). By combining (4.19),(4.21),(4.25),(4.27),(4.29),

(4.30),(4.31), and (4.32), we can bound iW(u(T)) in terms of

the quantities which appear on the right hand sides of these

estimates. We want to show that te right hand sides are

appropriately "small" if io, YF, and 9,1 are small. This will

require that the integral

i I"
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Co 2 (k)0  2f .kI h(t+s)l v (s)?3_k dsdt
00k=O

be small uniformly in T > 0 if 91' is small. When h satisfies

(4.9), we have

2 i (k)o 2
(4.34) k j 0 h(t+s) 11 v (s)113 _ k d

I k=00 0

< c 1(v), V T > 0.

If, on the other hand, (4.9) does not hold, we can replace

(4.10) with (4.13) and the proof concludes in essentially the

same manner.

Observe that by combining (4.19),(4.21),(4.25),(4.27),

(4.29),(4.30),(4.31), and (4.32), we can dominate W(u(T)) by

a linear combination of the suprema over O,T] of the right

hand sides of these estimates. Suppose now that

(4.35) -F(f) + 9'(v) < 1,

and that

U2

(4.36) ?(u (T)) <V2

for some v with 0 < v < 1. Then the supremum over [0,T] of
U

the absolute value of each term which appears on the right

hand side of (4.19),(4.21),(4.25),(4.27),(4.29),(4.30),(4.31),

or (4.32) can be majorized by one of vA.(u(T)),

A( -5; (f)+9(v)}I, or cA-W(u(T)) + A tY f)+ '(v)} for each > 0,

where A is a positive constant which can be chosen independently
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of f,vTv, and c. Thus if (4.35) and (4.36) hold with

0 < < 1, we have an estimate of the form

(4.37) -W(u(T)) < (v+ )Mig(u(T)) +
wC

valid for any c > 0, where M is a positive constant which is

1
independent of f,v,T, and v. If we set c - then (4.37)

yields

(4.38) 3 (u(T)) < v M-(u(T)) + (4M 2+M){ (f)+9/(v)}

It is now evident that if (4.35) and (4.36) are satisfied

2 .1

with v < min(l, T-), then

(4.39) < 8 O(-! 1v

Choose 60 > 0 such that if {Y5(f)+)/(v)} < 60) then

.(u(0)) < min(l, ), and set 6l = g min( , -,

- 8M +M 4M(8M +1)

6 = min(l,6 0,61 ). (The existence of such a 60 follows easily

from the definitions of-,F, and Vi.)

Assume that {Y5(f)+5Y(v)} < 6. Then, (4.39) implies that

there is no TE[OTmax) for which.WO(u(T)) = rain(l, 4J ) . This,

in conjunction with the fact that 4(u(O)) < min(l, implies

1
that -W(u(T)) < min(l, a) for all TE[0,Ta), and the cyclemax)

closes, yielding

(4.40) -W(u(t)) < (8M 2+M){_(f)+ /(v)} V T E [0,T max).

Thus, (4.15) is established and the proof is complete. U
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Chapter 5. Materials with Fading Memory.

We now apply the results of the preceding chapters to

establish global existence of smooth solutions to the equations

of motion for materials with fading memory. Consider the

longitudinal motion of a homogeneous one-dimensional body with

reference configuration q = (0,1), a natural state, and unit

reference density*. As in the Introduction, we let u(x,t) be

the displacement at time t of the particle with reference

position x, and we use a and c to denote the stress and strain.

We assume that the stress is determined by the temporal

history of the strain through a constitutive relation of the

form

(5.1) o(xt) = (Et (x,')),

where t(x,s) = c(x,t-s), s > 0, and _V is a real-valued

functional with domain in Vh for some influence function h.

Recall that Vh is the set of all measurable functions

w:[0,') -*R such that f h(s)lw(s) 2ds < - equipped with the
0

norm given by

(5.2) 2wI= w 2 + f h(s)Iw(s)2 ds,

0

and that hE L (0,-) is assumed to be positive and nonincreasing.

We assume that there is a neighborhood & of zero in Vh

The assumptions of homogeneity and unit density are made only
for the sake of simplicity.
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such that Y is defined and continuously Fr~chet differentiable

on 69 . The Riesz Representation Theorem then implies that the

Fr~chet derivative Y1' of Y admits the representation

(S.3) W'(w;w) = E(w)w(O) - K(w,s)w(s)ds

0

for some E: - IR and K: & x[O,) - IR such that
o00

f-K(ws) h(s)ds < for each w E &. We assume that E and K are

0

tvice continuously differentiable on 6? and &x[0,), respective-

ly, and define

5

(5.4) G(0,s) = E(0) - J K(O, )d ,

0

and

CO

(5.5) G (0) = E(O) f K(O, )dC.

0

Physically natural assumptions are

(5.6) E(0) > 0, G6 (0) > 0,

k dk
(5.7) (-1) 7- G(0,s) > 0, s > 0, k--0,1,2

ds

and the history dependence will be "dissipative" if

(5.8) d G(0'S) s

Roughly speaking, (S.6),(S.7), and (5.8) say that the lineariza-

tion of (5.1) about the zero history is the constitutive relation

for a physically reasonable linear viscoelastic material of the

Boltzmann type.
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V In order to establish existence of solutions to the corre-

sponding equation of motion, we require that E and K satisfy

certain technical conditions. In particular, we assume that

there is a ball 91 of radius r1 centered at zero in Vh and a

locally bounded function P:[0,r1  -'IR such that*

(5.9) IE(w)I < P(1fwI1h),

(5.10) IE'(w;z 1  < P(11wI1h)ii1zlJ1h,

(5.11) IE"(w;z 1;z2)1 < P(11w11h)_I1zlI1h-I1z2I1h,

(5.12) f K(w,s) 2h(s)- 1ds < P(J1wI1h)
0

00

4(5.14) j K(w~sz21 ,s) h1s ds < P(11wh) Izlh
0

1W(5.15)4(wz,) 2 1l 2

0

(5.16) fK"(w;z1;z,s) 2 -l s 2~lb 1ZJ 9

0

UV w E &ly,l,z 2 EVh,

and that

We use K'(-;.,s) to denote the Fr~chet derivative of K(-,.S)
holding s fixed and K(w,-) to denote the derivative of K(w,.)
holding w fixed. We use R' to denote the "mixed derivative"
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(5.17) f {G(0,s)-G (0)} 2h(s)- ds <

0

We feel that these conditions are quite reasonable.

Many of the functions in this chapter are introduced

originally as mappings from [0,1] cross a time interval into IR.

Such functions can also be regarded in a natural way as mappings

from a time interval into various spaces of functions defined

on [0,1]. We use the same symbol to denote each of these maps.

Throughout this chapter, Hk(0,1) stands for the usual Sobolev

space W k'2 (0,1).

Consider now the history-boundary value problem of place,

viz.

t
(5.18) u tt(x,t) = 5 -W(u x(x,"))+f(xt), 0 < x < 1, t > 0,

(5.19) u(x,t) = v(x,t), 0 < x < 1, t < O,

(5.20) u(O,t) = u(l,t) =  0, -0 < t < co

where f is the (known) body force and v is an assigned function

on [0,l]x(--,0]. Of f we assume that

(5.21) f E C0 ([0,-);H1 (0,l))flL2 ([0,);H1 (0,1)),

(5.22) ft C 0([0,-);L2 (0,1))nL2 ([0,c);L2 (0,1)),

(5.23) f EL 2([0,o) ;L (0,1)),(5.23) tt

(5.24) f(o,t) = f(1,t) = 0, t > 0,

and of v we assume that
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3
(5.25) v E n C 3-k((-o,0];H k(0,1)),

k=0

(5.26) v(O,t) :v (Ot) =v(t) = v (1,t) : 0, t < 0,
xx xx

(5.27) vtt(x'O) - (v(x, ))+f(x,0), 0 < x < 1.

We measure the sizes of f and v by
! 1

(5.28) Y9(f) =sup ff+f)(x,t)dx
tE[O,c) 0

* +1 (f +f +ftt)(x,t)dxdt,
00

and
1
(sz ):I 2 2 2

(5.29) ~'(v) f (v 2+V2 v 2t)(x,0)dx(xxx+Vxxt+Vxtt) x )d

0

+ h(t) {V2x+V2x+V tt} (x,-t)dxdt.

0 0

Theorem 5.1: Assume that the maps E:&9+R, K:& x[0,) -IR

are twice continuously differentiable, that (5.6) through (5.17)

* hold and that the influence function is of the form

(5.30) h(s) = Me -c s, Mc > 0.

Then, there exists a positive constant 6 such that for any f

and v which satisfy (5.21) through (5.27) with

(5.31) 5r(f) + 9,(v) < 6,

the history-boundary value problem (5.18),(5.19),(5.20) has a

unique solution uEC 2 ([0,l]x(-,)). Moreover, Uux UtUxxUxt,

U
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and utt converge to zero uniformly on [0,1] as t - c.

Remark 5.1: Theorem 5.1 remains valid if we drop assumption

(5.30) and replace (5.1) with the strengthened smallness

condition

(5.32) 3W(f) + 91(v)

+ h(t+s){v 2  +V2 +v 2 Ix,-tux±Is <_6
0 0 0

Remark 5.2: Theorem 5.1 remains valid if we replace (5.7) and
U

(5.8) with the assumption that the function m defined by

m(s) = G(0,s)-G (0) is a strongly positive definite kernel

on [0,-).

Proof of Theorem 5.1: Our goal is to put (5.18),(5.19),(5.20)

in te abstract setting of Chapter 2 and then apply Theorem 4.1.

Define

[2
(5.33) = L 2(0,l)

=1U (5.34) Q H0(0,1)

(5.5) 2 1
(5.35) = HI (0,1) n H0((0l)

(5.36) "q. = {wE H 3(0,1):w(0) = Wx(0) = w(l) = Wx(1) = 0}
3xx xx

equipped with the norms* given by

2 k 2
* (5.37) lwlk f f--- w(x)) dx.

0 dx

These norms are associated in an obvious way with inner
products.
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The natural imbeddings -k+l 9 'k are continuous and dense,

and a simple integration by parts shows that (2.8) holds. Tne

corresponding space 9-i is H (0,1). Let Y and 9<, k=1,2,3,

be constructed from the -qk as in Chapter 2.

Observe that if w E 19,, then for each fixed xE[O,lJ, we

have w (x, ' ) EV h and

(5.38) sup i1wx (x,')Ilh < cl1i w1112,xE[0,1]

where c1 is a positive constant which is independent of w.

Thus if H is a continuous functional on Vh, then for w E 92'

H(w x(x,)) is well-defined for each xE[0,1], and is in fact a

continuous function of x.

If u is smooth, then (5.18) is equivalent to

(5.39) utE(u )u + J K(uts)ut (x,s)ds =f,(.9 utt-E (u)xx f x x

0

which is of the form (2.15). However we cannot apply Theorem

4.1 directly because E is not defined on all of Vh. This purely

technical inconvenience will be overcome by constructing a smooth

map T: V, which contracts V. to a small ball and is equal

to the identity on a smaller ball. We then consider

(5.40) utE(T(ut )x)u + f K(T(utx) s)ut (xs)ds = ftt- xxx fx xx
0

in place of (5.39), and apply Theorem 4.1. We show that the
W

history-value problem associated with (5.40) has a unique

solution u which is sufficiently "small" so that T(u t ) = u t

V
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for all t > 0, whence u is also a solution of (5.39).

Let 02 be a ball of radius r2 centered at zero in

For r 2 < r 1 /cl, where c1 is the constant in (5.38), we can

define A: 02 . by

(5.41) A(w)z = -E(wx)z xx w E 62, z E .9"

Now clearly we have

2
<A(0)z,z> = E(0)jlzll 1 I V z E R1"

Moreover, A is continuously differentiable on &2 and

A'(w) is bounded for w E &P. Consequently, there is some

smaller ball 93, of radius r3 < min(l,r2) centered at zero

in 9', and there are positive constants X and K such that

(5.42) <A(w)z,z> > XzIIzII 2  V w E 1'- 1 V 3 1

and

(5.43) E((w) x) > K V w E & 3 .

Also, for each w E &9, A(w) is invertible with

(A(w)) E n _Zk) and there is a constant 1 such
k=2

that

(5.44) 11 (A(w)) zlzlk < Pl I Zlk2 V w 3 1 9jI

Let 0:[0,-) [0,-) be a C* smooth function which satisfies

2
(S.45) €( ) 1, 0 < C < 3
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v/~ 2
(5.46) () > 3 - ' - < < r32

r 23

and

(5.47) = >

and define T: 62 '-12 by

(5.48) Y(w) - wItllw lll 2) "

Observe that T is Co smooth,

(5.49) T(w) = w V w E 92 with 3
2IIIIII2 2

and

(s.50) 111Y (w) 1112 < r r3  V w E 9 2 .

Now, define A: 9 2 and B: 9'2 x [0,-) .-'- by

(5.51) A(w)z = -E('(w) )z , w E , z Ex xx 9'

(5.52) B(w,s)z = K('(w)xS)zx w E 2, s > 0, z E

and set
00

(5.53) C(0,s) = f B(0, )d , s > 0,

(5.54) F(0) = A(0) - C(0,0).

Note that

(5.55) C(O,s)z = [G(O,s)-Go(O)lzxx, s > 0, z E
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and

(5.56) F(0)z = G (Q)z , z E. 1.

It follows immediately from our construction of A,B,C, and

F, and (5.6) through (5.17) that (a-l),(a-2),(a-3),(a-7),(a-8),

and (a-9) are satisfied, and a simple computation shows that

(a-4) is satisfied. As regards (a-S), the linear initial

value problem (2.26),(2.27) here takes the form

Wt~x
(5.57) Ztt(x,t) - E(T(w )x )z x(x ,t) = g(x,t),

0 < x < 1, 0 < t < TV

(5.58) Z(Ot) = Z(l,t) = 0, 0 < t < T,

(5.59) Z(x,0) = Z0 (x), Zt(x,0) = Zl(x), 0 < x <_ 1.

3

If w E n w3 -k'0(( T;") , then the function
k=0

a:[0,1]x[0,T] -R defined by
S

(5.60) a(x,t) = E('(w t)x) 0 < x < 1, 0 < t < T

satisfies
V

(5.61) aE W '"([O,1lx[O,T]),

and

- (5.62) a(x,t) > K > 0, 0 < x < 1, 0 < t < TV
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By standard theory for linear hyperbolic equations, (5.57),3 3-
(5.58),(5.59) has a unique solution Z E c3 -k ([0,T];R k),

k=O
provided that Z0 E-Q, Z1 €-Q2, and g satisfies (2.24),(2.25).

Thus (a-S) is satisfied.

It remains only to check (a-10) and (a-li). Define

m:[O,) -.R by

(5.63) rn(s) = G(O,s)-Gj(o), s > 0.

Then, by (5.7),(5.8),(5.12),(5.13), and (5.17), m satisfies

kdk

(5.64) (-1) d rn(s) > 0, s > 0, k=0,1,2
ds

(5.65) d- r(s) 1 0, s > o,

and

(5.66) m E W 2,1 (0,),

From Corollary 2.2 of [14], we deduce that m is a strongly

positive definite kernel on [0,-). It now follows from Lemma

4.2 of [15] that (a-10) is satisfied. Moreover, Lemma 3.2 of

[ 8 ] implies that the scalar Volterra operator L defined by
t

(5.67) (LX)(t) = E(0)X(t) + f m(t-T)X(T)dT
0

has a resolvent kernel which belongs to L1 (0,-). This guarantees

that (a-1l) is satisEied.
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It follows from (5.21) through (5.27) that f and v satisfy

(4.1) through (4.5). Thus, Theorem 4.1 implies that for 6

sufficiently small, the history value problem (2.15),(2.16) has

a unique solution

3-k(5.68) u E n C
k=l

In addition, the restriction of u to [0,o) satisfies

3 c _
3-k(5.69) u E n C, ([o,-); k'

k=O

• 3
(5.70) u E n W3 -k 2

k=0

The estimate (4.12) shows that by further restricting the sizer5

of 6 if necessary, we have llu t ll < for all t > 0 so that

V(u t ) = U t for all t > 0, whence u is also a solution of (5.18).

Clearly u satisfies (5.19) and (5.20).

By (5.69) we have

(5.71) uxxUxt,utt E C((-cc);H1(0,l)),

and since the injection of H1 (0,1) into C[O,1] is continuous,

this implies that

a (5.72) u Cc2([0,1]x(--,,-)).

Finally, it follows from (S.68),(5.69) that as t

(5.73) U'u "uunif. 0
(5.73) UUtUxxUxtUtt 0

The proof is complete. U
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We now discuss boundary conditions of traction. Since the

reference configuration is a natural state, we require that

(5.74) Y '(O) = 0.

Consider the boundary condition

(5.75) U(Xoyt) = 0 , - < t <

x= 0 or x= 1. Implicit in (5.75) is the assumption that

js(xot)l is small enough so that et(x 0 )E9 for all t. Using

* the constitutive relation (5.1), we rewrite (5.75) as

(5.76) .V(Et(x) 0 , -0 < t < 00

which is a functional equation for e. Clearly (5.76) holds if

(5.77) e(Xot) = 0, -0 < t < C.

It is straightforward to verify that if Y9 satisfies the

assumptions of Theorem 5.1 and c(x0 ,t) = 0 for all t < 0, then

(5.75) and (5.77) are equivalent. We assume that E(x0 ,t) = 0

* for all t < 0 and replace (5.75) with (5.77).

Consider the history-boundary value problem

(5.78) u t(x,t) =- Y (Ut(x,")) + f(x,t), 0 < x < 1, t > 0,

(5.79) u(x,t) = v(x,t), 0 < x < 1, t < 0,

Conditions (5.75) and (5.77) are actually equivalent under

the weaker assumption that F(xo,.) W1 ,2 (--,0).
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(5.80) ux (Qt) = Ux (lt) = 0, - < t < C.

In place of (5.24) and (5.27) we assume that f and v satisfy

Lim 1

(5.81) J f(x,t)dx = 0, t > 0,
f0

1

(5.82) J v(x;t)dx = 0, t < 0,

0

and

(5.83) vx (Ot) = V x(lt) = 0, t < 0.

Theorem 5.2: Assume that the maps E:&- IR, K: x[0,oo) IR

are twice continuously differentiable, that (5.6) through (f. 4')

hold and that the influence function h is of the form (5.30).

Then, there is a positive constant 6, such that for any f and

v which satisfy (5.21),(5.22),(5.25),(5.27),(5.81),(5.82), and

(5.83) with

(5.84) r(f) + 9(v) < 61,

the history-boundary value problem (5.81),(5.82),(5.83) has a

unique solution uE ([0,l]x(-xc)). Moreover, U,UxUt,Uxx,Uxt,

q and utt converge to zero uniformly on [0,1] as t -

A similar result holds for the mixed problem

(5.85) u (x't) (I _'(ut (x,)) + f(x,t) 0 < x < 1, t > 0,tt xt ax

U
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(5.86) u(x,t) = v(x,t), 0 < x < 1, t < 0,

(5.87) u(0,t) = Ux (lt) = 0, - < t <

Now, in place of (5.24) and (5.25), we assume that f and v

satisfy

(5.88) f(0,t) =  0, t > 0

and

(5.89) v(0,t) = Vxx(0,t) = v(l,t) = 0, t < 0.

U

Theorem 5.3: Assume that the maps E:69- +]R, K: Ox [0,o) -IR

are twice continuously differentiable, that (5.6) through (5.17)

hold and that the influence function h is of the form (5.30).

Then, there is a positive constant 62 such that for any f and v

which satisfy (5.21),(5.22),(5.23),(5.25),(5.27),(5.88) and

(5.89) with

(5.90) Y(f) + 9(v)< V

the history-boundary value problem (5.85),(5.86),(5.87) has a

unique solution uEC 2([0,1]x(--,-)). Moreover, U,UxUtUxxUxt,

and utt converge to zero uniformly on [0,1] as t

Remarks 5.1 and 5.2 also apply to Theorems 5.2 and 5.3.

The proofs of these theorems are almost identical to the proof

of Theorem 5.1. Other types of boundary conditions can be

handled similarly.

With certain modifications, the procedure presented here

can also be used to establish global existence of smooth

UI
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solutions to certain appropriate history value problems

associated with the motion of multidimensional bodies composed

of materials with fading memory. For n-dimensional bodies, we

require spaces 20, -9I' .. -m, and V' ,2 . m where

m = [n/2], and that A and b be defined on ' and
m-i

9/m-lX[0,-) respectively. We then seek a solution u of
m r-k

(2.15),(2.16) which satisfies u E n C m The
k=0

required a priori estimates become extremely lengthy.

U
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